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By using the q-Gaussian distribution derived by the maximum entropy method for spatially correlated N-unit
nonextensive systems, we have calculated the generalized Fisher information matrix of g�n�m

for ��1 ,�2 ,�3�
= ��q ,�q

2 ,s�, where �q, �q
2, and s denote the mean, variance, and degree of spatial correlation, respectively, for

a given entropic index q. It has been shown from the Cramér-Rao theorem that �1� an accuracy of an unbiased
estimate of �q is improved �degraded� by a negative �positive� correlation s, �2� that of �q

2 is worsen with
increasing s, and �3� that of s is much improved for s�−1 / �N−1� or s�1.0 though it is worst at
s= �N−2� /2�N−1�. Our calculation provides a clear insight to the long-standing controversy whether the
spatial correlation is beneficial or detrimental to decoding in neuronal ensembles. We discuss also a calculation
of the q-Gaussian distribution applying the superstatistics to the Langevin model subjected to spatially corre-
lated inputs.
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I. INTRODUCTION

It is well known that the Fisher information plays an im-
portant role in statistical mechanics and information theory
�for review see �1��. The Fisher information is a useful tool
in evaluating an accuracy of information decoding providing
the lower bound for estimation errors of unbiased estimates
in the Cramér-Rao theorem �1�. The Fisher information ex-
presses the metric tensor in the Riemannian space spanned
by the probability distribution functions �PDFs� in the infor-
mation geometry �2�. Calculations of the Fisher information
have been made for various systems such as neuronal en-
sembles �3–17�. Neurons in ensembles communicate infor-
mation, emitting short voltage pulses called spikes, which
propagate through axons and dendrites to neurons in the next
stage �for review see �18–22� and related references therein�.
Main issues on the neuronal code are whether the informa-
tion is encoded in the rate of firings �rate code� or in the
firing times �temporal code�, and whether the information is
encoded in the activity of a single �or very few� neuron or
that of a large number of neurons �population code�. A recent
success in brain-machine interface �23� suggests that the
population code for the firing rate is employed in sensory
and motor neurons, although it is still unclear what kinds of
codes are adopted in higher-level cortical neurons.

The theoretical study of the Fisher information has been
performed for a discussion on the accuracy of decoding and
the efficiency of information transmission �3–17�. Calcula-
tions of the Fisher information have been made mainly for
uncorrelated �independent� systems because of a mathemati-
cal simplicity. It has been shown that in independent sys-
tems, the Fisher information increases proportionally to the
ensemble size �4,8,10,11�. However, the correlation among
constituent elements is inevitable in real systems. In neuronal
ensembles, for example, statistical dependence among con-
sisting neurons would be expected because each neuron may
receive the same external inputs and because consisting neu-

rons are generally interconnected �18–22�. There has been a
long-standing controversy how correlation affects the effi-
ciency of population coding. Some researchers have shown
that the correlation enhances the effectiveness of neural
population code �9,12�, while some have claimed that the
correlation hinders the population code �5–8,10,11�. In par-
ticular, the Fisher information is shown to saturate to a finite
value as the system size grows in the presence of a positive
correlation �8,10,11�. This raises questions on the role of
correlation in information decoding.

In the last decade, much attention has been paid to the
nonextensive statistics since Tsallis proposed the so-called
Tsallis entropy Sq. For N-unit systems, Sq is given by
�24–27�

Sq =
kB

q − 1
�1 −� p�x�qdx� , �1�

where q is the entropic index, kB the Boltzmann constant,
x= 	xi
 �i=1 to N�, dx=�i=1

N dxi, and p�x� denotes the multi-
variate PDF. In the limit of q→1.0, the Tsallis entropy given
by Eq. �1� reduces to the Boltzmann-Gibbs-Shannon entropy,

S1 = − kB� p�x�ln p�x�dx . �2�

The Tsallis entropy is nonadditive because for p�A�B�
= p�A�p�B�, we obtain

Sq�A � B� = Sq�A� + Sq�B� −
�q − 1�

kB
Sq�A�Sq�B� . �3�

The Tsallis entropy is superextensive, extensive, and subex-
tensive for q�1, q=1, and q�1, respectively, and q−1 ex-
presses the degree of the nonextensivity. The PDF of p�x� in
Eq. �1� is obtained by using the maximum entropy method
�MEM� for the Tsallis entropy with some constraints. There
are four possible MEMs at the moment: original method
�24�, un-normalized method �28�, normalized method �25�,
and the optimal Lagrange multiplier �OLM� method �29�.
The four methods are equivalent in the sense that distribu-
tions derived in them are easily transformed to each other*hideohasegawa@goo.jp
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�30�. A comparison among the four MEMs is made in Ref.
�27�. The Tsallis entropy is a basis of the nonextensive sta-
tistics, which has been successfully applied to a wide class of
systems with the long-range interaction and/or nonequilib-
rium �quasiequilibrium� states �26,27,31�.

One of the alternative approaches to the nonextensive sta-
tistics besides the MEM is the superstatistics �32–34� �for a
recent review, see �35��. In the superstatistics, it is assumed
that locally the equilibrium state of a given system is de-
scribed by the Boltzmann-Gibbs statistics and its global
properties may be expressed by a superposition over the fluc-
tuating intensive parameter �i.e., the inverse temperature�
�32–35�. The superstatistics has been adopted in many kinds
of subjects such as hydrodynamic turbulence �36–38�, cos-
mic ray �39�, and solar flares �40�.

The generalized Fisher information �GFI� in the nonex-
tensive statistics is defined by �41–48�

g�n�m
= qE�� � ln p�x�

��n

� � ln p�x�

��m

� , �4�

where E� · � stands for the expectation value over the PDF of
p�x� �=p�x ����, and � parameters specifying the PDF. Equa-
tion �4� is derived from the generalized Kullback-Leibler di-
vergence which is in conformity with the Tsallis entropy
�41–48�. In the limit of q→1.0, the GFI given by Eq. �4�
reduces to the conventional one. In a previous paper �49�, we
discussed the effect of the spatial correlation on the Tsallis
entropy and the GFI, calculating Sq and g�� for �=�q, where
�q stands for mean value �Eq. �6��. It is the purpose of the
present paper to extend the calculation to the GFI matrix of
g�n�m

for ��1 ,�2 ,�3�= ��q ,�q
2 ,s�, where �q

2 and s express
variance and degree of the spatial correlation, respectively
�Eqs. �7� and �8��. We will investigate the dependence of the
GFI on s, N, and q by using the PDF derived by the OLM-
MEM �29�. Such detailed calculations of the GFI matrix
have not been reported even for the extensive system
�q=1.0�, as far as the author is aware of. The calculated GFI
is expected to provide us with a clear insight to the contro-
versy on a role of the spatial correlation discussed above.
Quite recently, we have pointed out the possibility that input
information to neuronal ensembles may be carried not only
by mean but also by variance and/or correlation in firing rate
within the population code hypothesis �50,51�. The inverse
of the calculated GFI matrix expresses an accuracy of decod-
ing when input information is carried by such population
codes.

The paper is organized as follows. In Sec. II, we obtain
the PDF by the OLM-MEM for spatially correlated nonex-
tensive systems. In Sec. III, the maximum likelihood estima-
tor for the inference of the parameters is discussed. In Sec.
IV, analytic expressions for elements of the GFI matrix are
presented with some model calculations. In Sec. V, the PDF
for the Langevin model with spatially correlated inputs is
calculated within the superstatistics �32,33�, which is com-
pared to that derived by the MEM in Sec. II. Section VI is
devoted to conclusion with the relevance of our calculation
to decoding in neuronal population code �50,51�.

II. MAXIMUM ENTROPY METHOD
We consider spatially correlated N-unit nonextensive sys-

tems for which the Tsallis entropy is given by Eq. �1�
�24,25�. We derive the PDF, p�x�, by using the OLM-MEM
�29� for the Tsallis entropy imposing the constraints given by
�49�

1 =� p�x�dx , �5�

�q =
1

N
�

i

Eq�xi� , �6�

�q
2 =

1

N
�

i

Eq��xi − �q�2� , �7�

s�q
2 =

1

N�N − 1��i
�

j��i�
Eq��xi − �q��xj − �q�� , �8�

where Eq� · � denotes an expectation value averaged over the
escort distribution function of Pq�x�,

Pq�x� =
p�x�q

� p�x�qdx

. �9�

The OLM-MEM with the constraints given by Eqs. �5�–�8�
leads to the PDF given by �for details, see Appendix B of
Ref. �49��

p�x� =
1

Zq
expq�− � 1

2�q�q
2
�

i=1

N

�
j=1

N

Cij�xi − �q��xj − �q�� ,

�10�

with

Zq =�
rs�2�q�q

2

q − 1

N/2

�
i=1

N

B�1

2
,

1

q − 1
−

i

2



for 1 � q � 3,

rs�2��q
2�N/2

for q = 1,

rs�2�q�q
2

1 − q

N/2

�
i=1

N

B�1

2
,

1

1 − q
+

�i + 1�
2



for q � 1,

� �11�

Cij = c0	ij + c1�1 − 	ij� , �12�

c0 =
�1 + �N − 2�s�

�1 − s��1 + �N − 1�s�
, �13�

c1 = −
s

�1 − s��1 + �N − 1�s�
, �14�

rs = 	�1 − s�N−1�1 + �N − 1�s�
1/2, �15�
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�q =
��N + 2� − Nq�

2
, �16�

where B�p ,q� denotes the beta function and expq�x� the
q-exponential function defined by

expq�x� = �1 + �1 − q�x�+
1/�1−q�, �17�

with �x�+=max�x ,0�. We hereafter assume that the entropic
index q takes a value,

0 � q � 1 +
2

N

 3, �18�

because p�x� given by Eq. �10� has the probability properties
with �q�0 for q�1+2 /N and because the Tsallis entropy is
stable for q�0 �52�.

In the limit of q=1.0, the PDF given by Eq. �10� becomes
the multivariate Gaussian distribution given by

p�x� =
1

Z1
exp�− � 1

2�1
2
�

ij

Cij�xi − �1��xj − �1�� . �19�

III. MAXIMUM LIKELIHOOD ESTIMATOR

The logarithmic likelihood estimator for M sets of data of
xm= 	xim
 �i=1 to N, m=1 to M� is given by

ln L��� = �
m=1

M

ln p�xk��� = − � 1

q − 1

�

m=1

M

ln U�xm� − M ln Zq,

�20�

with

U�xm� = 1 +
�q − 1�
2�q�q

2 �
ij

Cij�xim − �q��xjm − �q� . �21�

Variational conditions for parameters of �=�q, �q
2, and s lead

to

� ln L

��q
=

1

�q�q
2 �

m=1

M

�
ij

Cij�xim − �q�
U�xm�

= 0, �22�

� ln L

��q
2 =

1

2�q�q
4 �

m=1

M

�
ij

Cij�xim − �q��xjm − �q�
U�xm�

−
MN

2�q
2 = 0,

�23�

� ln L

�s
= −

1

2�q�q
2 �

m=1

M

�
ij

�dCij/ds��xim − �q��xjm − �q�
U�xm�

+
MN�N − 1�

2�1 − s��1 + �N − 1�s�
= 0. �24�

After some calculations using Eqs. �12�–�14� and Eqs.
�22�–�24�, we obtain

�q =

�
m

�
i

ximU�xm�−1

N�
m

U�xm�−1
, �25�

�q
2 =

1

�qMN
�
m

�
i

�xim − �q�2

U�xm�
, �26�

s�q
2 =

1

�qMN�N − 1��m �
i

�
j�i�j�

�xim − �q��xjm − �q�
U�xm�

,

�27�

from which �q, �q
2, and s are self-consistently determined.

In the case of q=1.0, Eqs. �25�–�27� become

�1 =
1

MN
�
m

�
i

xim, �28�

�1
2 =

1

MN
�
m

�
i

�xim − �1�2, �29�

s�1
2 =

1

MN�N − 1��m �
i

�
j�i�j�

�xim − �1��xjm − �1� . �30�

IV. GENERALIZED FISHER INFORMATION

We have calculated elements of the GFI matrix given by
Eq. �4� with a basis of ��1 ,�2 ,�3�= ��q ,�q

2 ,s�, as given by
�for details, see the Appendix�

G =�
N

�q
2�1 + �N − 1�s�

0 0

0
N�q

2�q
4 −

N�N − 1��qs

2�q
2�1 − s��1 + �N − 1�s�

0 −
N�N − 1��qs

2�q
2�1 − s��1 + �N − 1�s�

N�N − 1��1 + �N − 1��qs2�
2�1 − s�2�1 + �N − 1�s�2

� . �31�
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The positive definiteness of g�� in Eq. �31� imposes the condition on conceivable values of s and q given by

−
1

�N − 1�
� sL � s 
 1, �32�

q 
 1 +
2

N
. �33�

The physical origin of Eq. �32� is expressed by �see Appendix C in Ref. �49��

0 
 Eq��X − �q�2� 

1

N
�

i

Eq��xi − �q�2� = �q
2, �34�

which signifies that the global fluctuation in X �=N−1�ixi� is smaller than the average of local fluctuations in 	xi
. The condition
given by Eq. �33� is satisfied by q in Eq. �18�.

In the limit of q=1.0 where �q=1.0, Eq. �31� reduces to

G =�
N

�1
2�1 + �N − 1�s�

0 0

0
N

2�1
4 −

N�N − 1�s
2�1

2�1 − s��1 + �N − 1�s�

0 −
N�N − 1�s

2�1
2�1 − s��1 + �N − 1�s�

N�N − 1��1 + �N − 1�s2�
2�1 − s�2�1 + �N − 1�s�2

� , �35�

which is in agreement with the result obtained directly from the multivariate Gaussian distribution given by Eq. �19�.
In the limit of s=0.0 �i.e., no correlation�, the GFI matrix given by Eq. �31� becomes

G =�
N

�q
2 0 0

0
N�q

2�q
4 0

0 0
N�N − 1�

2

� , �36�

whose elements of g�q�q
and g�q

2�q
2 agree with those obtained previously in Ref. �48�.

The Cramér-Rao theorem implies that the lower bound of an unbiased estimate of the parameters is expressed by the inverse
of the GFI matrix, which is given by

G−1 =�
�q

2�1 + �N − 1�s�
N

0 0

0
2�q

4�1 + �N − 1��qs2�
N�q

2�q
2s�1 − s��1 + �N − 1�s�

N

0
2�q

2s�1 − s��1 + �N − 1�s�
N

2�1 − s�2�1 + �N − 1�s�2

N�N − 1�
� . �37�

Equations �31� and �37� are the main result of our study. In what follows, we examine the s, N, and q dependences of the
inversed GFI matrix of h����G−1��� with some model calculations which are presented in Figs. 1–3.
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A. s dependence

Equation �37� shows �1� h�q�q
=0.0 at s=sL, �2� h�q

2�q
2 has

a minimum at s=0.0, and �3� hss vanishes at s=sL and s
=1.0. The maximum of hss locates at s= �N−2� /2�N−1�
�sM, which becomes sM =0.5 for a large N. Figure 1�a�
shows the s dependence of the inverse of the GFI for N=2
which is expressed by

G−1 =�
�q

2�1 + s�
2

0 0

0
�q

4�1 + �qs2�
�q

�q
2s�1 − s2�

0 �q
2s�1 − s2� �1 − s2�2

� . �38�

With increasing s from s=sL=−1.0, h�q�q
is linearly in-

creased. hss and h�q
2�q

2 are symmetric with respect to s=0.0

where hss �h�q
2�q

2� has a maximum �minimum�. Figure 1�b�
shows a similar plot for N=10 for which sL=−0.11. With
increasing s from s=−0.11, h�q�q

is linearly increased. hss

has a maximum at s=sM =0.44 and vanishes at s=−0.11 and
s=1.0.

B. N dependence

We note in Eq. �37� that for s=0, the GFI is proportional
to N. For a finite positive s, however, they show the satura-
tion when N is increased: for N→�, we obtain h�q�q

=�q
2s,

h�q
2�q

2 =2�q
4s2, and hss=2s2�1−s�2. For a negative s, inverse

matrix elements tend to vanish as N approaches �1+ �s�� / �s�.
The calculated N dependence of h�� is plotted in Fig. 2,
where inversed matrix elements for s=0.5 saturate at N
�10, although those for s=0.0 are proportional to N−1.

C. q dependence

Equation �37� shows that h�q�q
and hss are independent of

q, while h�q
2�q

2 is increased with increasing q from q=0. This
increase is due to a factor of �q in Eq. �16�, which is de-
creased with increasing q and which diverges at 1+2 /N: note
that �q=N /2+1, 1.0, and 0.0 for q=0.0, q=1.0, and q=1
+2 /N, respectively. The calculated q dependence of h�q

2�q
2 is

plotted in Fig. 3, where it diverges at q=2.0 �q=1.2� for N
=2 �N=10�.

V. DISCUSSION

We have discussed the GFI for the q-Gaussian distribution
derived by the MEM �24,25,29�. It is possible to derive the
q-Gaussian distribution by using the Langevin model within
the superstatistics �32,33�. We consider an ensemble consist-
ing of N elements in a given system. The dynamics of a
variable xi �i=1 to N� is assumed to be described by the
Langevin model given by

dxi

dt
= − 
xi + Ii�t� . �39�

Here 
 denotes the relaxation rate and input signals Ii�t� have
variability defined by

FIG. 1. �Color online� The s dependence of inverses of the GFI,
h�q�q

�solid curves�, h�q
2�q

2 �dashed curves�, and hss �chain curves�,
with �a� N=2 and �b� N=10 for various q ��q=0.0 and �q

2=1.0�.

FIG. 2. �Color online� The N dependence of inverses of the GFI,
h�q�q

�solid curves�, h�q
2�q

2 �dashed curves�, and hss �chain curves�,
for s=0.0 and s=0.5 �q=1.0, �q=0.0, and �q

2=1.0�.

FIG. 3. �Color online� The q dependence of inverses of the GFI,
h�q

2�q
2, for s=0.0 �dashed curves� and s=0.5 �solid curves� with N

=2 and N=10 ��q=0.0 and �q
2=1.0�.
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Ii�t� = I�t� + 	Ii�t� , �40�

with

�	Ii�t�� = 0, �41�

�	Ii�t�	Ij�t��� = 2D�	ij + sI�1 − 	ij��	�t − t�� , �42�

where the bracket � · � signifies the ensemble average, and 2D
and sI denote the variance and degree of the spatial correla-
tion, respectively. The variability in Eq. �42� arises from
noise and/or heterogeneity in consisting elements. The origin
of the spatial correlation may be common external inputs
and/or couplings among elements.

The Fokker-Planck equation �FPE� for the PDF of ��x , t�
for x= 	xi
 is given by

���x,t�
�t

= �
i

�

�xi
�
xi − I�t����x,t�

+ D�
i

�
j

Qij
�2

�xi � xj
��x,t� , �43�

with the covariance matrix Q whose elements are given by

Qij = 	ij + sI�1 − 	ij� . �44�

The solution of FPE �43� is given by

��x,t� = � 1

rs�2��2�N/2

�exp�−

1

2�2�
i

�
j

Cij�xi − ���xj − ��� , �45�

where �, �2, and s obey equations of motion given �argu-
ment t being suppressed� by

d�

dt
= − 
� + I , �46�

d�2

dt
= − 2
�2 + 2D , �47�

ds

dt
= − �2D

�2 
�s − sI� , �48�

with Cij and rs being defined by Eqs. �12� and �15�, respec-
tively. We note in Eqs. �46�–�48� that ��t� is decoupled from
�2�t� and s�t�, and that �2�t� is independent of s�t� although
s�t� depends on �2�t�. In the stationary state, we obtain

� = I/
, �2 =
D



, s = sI. �49�

After the concept in the superstatistics �32–35�, we as-
sume that a model parameter of � �=1 /�2=
 /D� fluctuates,
and that its distribution is expressed by the �2 distribution
with rank n,

f��� =
1

��n/2�� n

2�0

n/2

�n/2−1e−n�/2�0, �n = 1,2, . . .� ,

�50�

where ��x� is the gamma function. Average and variance of
� are given by ����=�0 and ���2��−�0

2� /�0
2=2 /n, respec-

tively. Taking the average of ��x� over f���, we obtain the
stationary distribution given by

p�x� = �
0

�

��x�f���d� , �51�

=
1

Zq
expq�−

1

2�q
�

i
�

j

Cij�xi − ���xj − ��� , �52�

with

Zq = �rs� 2�q

q − 1

N/2

�
i=1

N

B�1

2
,

1

q − 1
−

i

2

 for q � 1,

rs�2��q�N/2 for q = 1,
�
�53�

q = 1 +
2

�N + n�
, �54�

�q =
n

�0�N + n�
=

�N + 2� − Nq

2�0
, �55�

where rs is given by Eq. �15�. In the limit of n→�
�q→1.0� where f���→	��−�0�, the PDF reduces to the
multivariate Gaussian distribution given by

p�x� =
1

Z1
exp�−

�0

2 �
i

�
j

Cij�xi − ���xj − ��� , �56�

which agrees with Eq. �45� for �0=
 /D=1 /�2.
We note that the PDF given by Eq. �52� is equivalent to

that given by Eq. �10� derived by the MEM when we read
�=�q and �q=�q�q

2, besides the fact that the former is de-
fined for 1
q
 �1+2 / �N+n���2 �Eq. �54�� while the latter
for 0�q� �1+2 /N��3 �Eq. �18��.

In the limit of s=0 �i.e., no spatial correlation�, Eq. �52�
reduces to

p�x� � expq�−
1

2�q
�

i

�xi − ��2� , �57�

� p�x1��qp�x2��q ¯ �qp�xN� , �58�

with

p�xi� � expq�−
1

2�q
�xi − ��2� , �59�

where the q product is defined by �53�

x�qy = �x1−q + y1−q − 1�1/�1−q�. �60�

Note that in deriving Eq. �58�, the normalization factors of
p�xi� are not taken into account.
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VI. CONCLUSION

We have calculated the GFI matrix in spatially correlated
nonextensive systems. From the Cramér-Rao theorem, the
calculated GFI implies the following: �i� an accuracy of an
estimate of �q is improved �degraded� by a negative �posi-
tive� correlation, �ii� that of �q

2 is worsen with increasing s,
�iii� that of s is much improved for s�−1 / �N−1� and s
�1.0 while it is worst at s=sM = �N−2� /2�N−1�, �iv� those
of all parameters are improved with increasing N, and �v�
that of �q

2 is worsen with increasing q at q�1 and its esti-
mation is impossible for q�1+2 /N, while those of �q and s
are independent of q.

The points �i� and �iv� are consistent with previous results
for extensive systems �q=1.0� �7,8,10�. The point �iii� shows
that if input information is carried by synchrony within the
population code hypothesis �50,51�, its decoding accuracy
may be improved either by small or large correlation inde-
pendently of q �the point �v��. Our calculation concerns the
long-standing controversy on a role of the synchrony in neu-
ronal ensembles �5–12�.
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APPENDIX: CALCULATIONS OF THE GENERALIZED
FISHER INFORMATION MATRIX

First we express PDFs of p�x� in Eq. �10� in a compact
form given by

p�x� =
U−b

Zq
, �A1�

with

U = 1 + a2�
i

�
j

Cij�xi − �q��xj − �q� , �A2�

Zq =�
rs

aN�
i=1

N

B�1

2
,b −

i

2

 for 1 � q � 3,

rs�2��q
2�N/2 for q = 1,

rs

aN�
i=1

N

B�1

2
,− b +

�i + 1�
2


 for q � 1, �
�A3�

a = � �q − 1�
2�q�q

2 
1/2

, �A4�

b =
1

q − 1
. �A5�

By using the unitary transformation, Eq. �A2� is transformed
to

U = 1 + a2�
i


iyi
2, �A6�

where 
i and yi express eigenvalues and eigenvectors, re-
spectively. We obtain 
i given by


i =
1

�1 + �N − 1�s�
for i = 1, �A7�

=
1

�1 − s�
for 1 � i 
 N . �A8�

Explicit expressions for yi are not necessary for our discus-
sion, except for y1 given by

y1 =
1

�N
�

i

�xi − �q� . �A9�

Taking the derivatives of ln p�x� with respect to parameters
of �q, �q

2, and s, and performing tedious calculations with
Eq. �4�, we may obtain the GFI matrix elements given by Eq.
�31�. In deriving them, we have employed the following
expectation values:

E� 1

U
� =

�b − N/2�
b

, �A10�

E� yi
2

U
� =

1

2a2b
i
, �A11�

E� yi
2

U2� =
�b − N/2�

2a2b�b + 1�
i
, �A12�

E� yi
4

U2� =
3

4a4b�b + 1�
i
2 , �A13�

E� yi
2yj

2

U2 � =
1

4a4b�b + 1�
i
 j
for i � j , �A14�

where E� · � denotes the average over p�x�.
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